Программист показал, как написать собственный детектор фальшивых новостей

В условиях растущего числа фальшивых новостей в последней статье для HackerNoon Кан Киси решил использовать так называемый DIY-подход (или «сделай сам») к обнаружению дезинформации с помощью рекуррентных нейронных сетей (RNN). В его «учебном пособии» вы сможете узнать, как создать детектор фальшивых новостей на Python, используя TensorFlow и Keras для создания и обучения модели RNN.

Начиная с основных библиотек, таких как NumPy и TensorFlow, Киси описывает пошаговый процесс, включая загрузку данных, предварительную обработку и токенизацию текста. Архитектура модели включает слои Embedding и LSTM, а также Dropout для регуляризации. После компиляции с бинарными потерями кроссэнтропии и обучения с ранней остановкой производительность модели оценивается и визуализируется с помощью графиков точности и потерь.

Киси подчеркивает важность качества данных и решает такие проблемы, как чрезмерная подгонка. Несмотря на ограничения, включая зависимость модели от предварительно обработанного текста и длительное время обучения, этот подход демонстрирует потенциал RNN в различении настоящих и фальшивых новостей.

Подробную статью со скриншотами вы можете прочитать по ссылке ниже.

Источник: www.ferra.ru

0 0 голоса
Рейтинг новости
12545
0
Подписаться
Уведомить о
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии