ИИ научился предсказывать теплопроводность материалов в 1000 раз быстрее

Ученые из Массачусетского технологического института (MIT) создали новую систему искусственного интеллекта (ИИ), которая может предсказать теплопроводность материалов в 1000 раз быстрее, чем существующие методы на основе машинного обучения.

Теплопроводность материалов крайне важна для разработки эффективных систем генерации энергии и высокоскоростной электроники. Однако традиционные методы ее измерения сложны и трудоемки.

Дело в том, что теплопроводность материалов зависит от поведения квазичастиц, называемых фононами. Изучение фононов с помощью методов искусственного интеллекта наталкивалось на проблему точности и скорости вычислений. Новая система ИИ решает эту задачу, прогнозируя поведение фононов с высокой точностью, но при этом в разы быстрее существующих аналогов.

По словам Мингды Ли, профессора ядерной науки и техники и одного из авторов исследования, этот метод позволит инженерам разрабатывать более эффективные системы генерации энергии и электронные устройства.

Источник: www.ferra.ru

0 0 голоса
Рейтинг новости
12574
0
Подписаться
Уведомить о
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии