Совершён прорыв в области сегнетоэлектрических материалов

Исследователи из МФТИ и Пекинского технологического института сделали значительный шаг вперёд в области сегнетоэлектрических материалов. Они разработали новый метод создания ультратонких плёнок с исключительными свойствами. Эта работа, опубликованная в Advanced Materials, прокладывает путь к разработке миниатюрных электронных устройств нового поколения.

Сегнетоэлектрические материалы обладают уникальным свойством, известным как спонтанная поляризация, — явление, при котором электрические диполи выстраиваются в определённом направлении. Упорядочение происходит в границах определённого домена — области кристалла, где поляризация одинакова. При этом направление и величина поляризации могут быть изменены при приложении внешнего электрического поля. Материалы с подобными свойствами применяются в таких устройствах, как транзисторы, устройства памяти и датчики.

Одной из главных проблем использования сегнетоэлектриков является потеря их свойств при миниатюризации. По мере того как эти материалы становятся тоньше, их спонтанная поляризация ослабевает и исчезает, что ограничивает возможность их применения.

В поиске решения этой проблемы научная группа под руководством Василия Столярова изучила ультратонкие плёнки CuCrSe2. Для создания плёнок использовали метод химического осаждения из газовой фазы, позволяющий точно контролировать состав, структуру и толщину материала.

Но сначала пришлось разработать специальную вакуумную камеру, где под строгим контролем давления происходило взаимодействие реагентов: газообразного селена и элементарных меди и хрома. В установке под воздействием высокой температуры, в условиях постоянного потока газа происходит перенос атомов селена в реакционную зону, где уже находятся медь и хром. Эти «строительные блоки» затем вступают в химические реакции, формируя на поверхности подложки из слюды ультратонкую плёнку CuCrSe2. Вакуумная система откачивает из камеры неиспользованные газы и побочные продукты, оставляя на подложке очень тонкое покрытие, состоящее из отдельных нанокристаллов.

Получающиеся кристаллы имеют форму треугольника, которая вызвана тригональной симметрией их собственной кристаллической структуры. Именно такое расположение атомов в нанокристалле CuCrSe2 приводит к минимизации поверхностной энергии и, как следствие, полной энергии структуры. Тип и ориентация подложки также влияют на рост плёнки. В работе учёные использовали монокристаллический сапфир, который имеет гексагональную структуру. Кроме того, форма нанокристалла может быть обусловлена скоростью и условиями роста материала.

Атомная структура полученных нанокристаллов. Изображения получены с помощью различных видов просвечивающей электронной микроскопии (ПЭМ). a) ПЭМ-изображение нанослоя CuCrSe2 с картированием элементов (Cu, Cr, Se) методом энергодисперсионной спектроскопии (EDS). b, c) HAADF-STEM (просвечивающая электронная микроскопия с высокоугловым кольцевым тёмным полем) изображения кристалла CuCrSe2 с высоким разрешением в режиме просвета (b) и выделенной области (c). Врезки — компьютерная модель структуры кристалла. d, g) Дифракционные картины кристалла CuCrSe2 в режимах просвета (d) и поперечного сечения (g). e, f) HAADF-STEM изображения кристалла CuCrSe2 в поперечном сечении (e) и выделенной области (f). Врезка — компьютерная модель структуры кристалла. На рисунках (c) и (f) медь, хром и селен обозначены зелёным, розовым и оранжевым соответственно. Источник: Advanced Materials

«Наш подход позволил создать плёнки CuCrSe2 толщиной всего 5,2 нанометра, при этом они продолжали демонстрировать свои сегнетоэлектрические свойства, — объясняет Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ. — Примечательно, что эти плёнки сохраняют свою спонтанную поляризацию даже при температурах до 800 кельвинов, что значительно выше, чем наблюдалось в других аналогичных структурах».

Исследователи использовали различные методы микроскопии и спектроскопии, чтобы проверить структуру, состав и ферроэлектрические свойства полученных плёнок CuCrSe2. Измерения пьезоотклика с помощью силового микроскопа предоставили решающие доказательства переключаемой поляризации нового материала.

Этот прорыв сулит большие перспективы для разработки миниатюрных электронных устройств с улучшенными характеристиками и функциональными преимуществами. Возможность создавать высокотемпературные сегнетоэлектрические плёнки открывает двери для применения в различных областях, например в чипах памяти высокой плотности, сверхчувствительных датчиках и транзисторах следующего поколения.

«Наши результаты не только представляют новый класс высокоэффективных сегнетоэлектрических материалов, но и дают ценные сведения об основных механизмах, управляющих сегнетоэлектричеством на атомном уровне, — заключает Василий Столяров. — Эти знания могут проложить путь к проектированию и разработке ещё более совершённых сегнетоэлектрических материалов в будущем».

Источник: habr.com

0 0 голоса
Рейтинг новости
23731
0
Подписаться
Уведомить о
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии